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A still from Estuaries 3 (2018), an audiovisual composition I created with the assistance of my OptiNelder 
video filter. The Nelder-Mead triangles are quite clear in this image 

My OptiNelder video filter entails the visualization of Nelder-Mead search agents seeking brightest 
or darkest points in a source image. The filter will be described in detail in an upcoming book 
chapter (TBA). The intent with this paper is to describe the Nelder-Mead algorithm itself in relatively 
simplified form to facilitate understanding of the process for artists and other non-specialists 
(including myself). 

Let us conceive of all of the potential outputs of a mathematical function as forming a terrain – a 
contoured landscape. Optimization entails finding the lowest point in that landscape. The Nelder-
Mead algorithm (Nelder and Mead 1965) is a classic “direct-search” method for such optimization. 
That is to say, it does not optimize by solving equations, but instead uses a heuristic (a rule-of-thumb 
process) to hunt for the solution.  

Nelder-Mead can be used to solve high-dimensional problems (ones with many variables). But to aid 
understanding, below I present a two-dimensional (i.e. two-variable) application specifically rather 
than using the more abstract/generalized type of description that mathematicians love. The 
explanation here is based on the generalized 𝑛-dimensional formalization provided by M. H. Wright 
(1996).  

One result of this is that, instead of referring to a “simplex” (a tetrahedron of some arbitrary number 
of dimensions), the below refers to a triangle – the type of simplex the Nelder-Mead algorithm 
would use to solve a two-dimensional problem.  



 2 

Thus, we can say: To optimize our two-dimensional problem, the Nelder-Mead algorithm mutates a 
triangle iteratively so it moves over the terrain step-by-step. At each step, the algorithm uses what is 
discovers at the corners of the triangle to decide how to transform the triangle for the next step. 
Hopefully, the wandering triangle will ultimately discover the lowest point in the landscape. (There 
are various ways in which it might fail, but we will not address those here.) 

The diagrams below are designed based on the standard coefficient settings for the Nelder-Mead 
algorithm. The coefficients are referred to in the original paper as 𝜌 (rho) for reflection, 𝜒	(chi) for 
expansion, 𝛾 (gamma) for contraction and 𝜎 (sigma) for shrinkage. These should satisfy ρ > 0, χ >
1, 0 < 𝛾 < 1, and 0 < 𝜎 < 1. Standard choices for these values are 𝜌 = 1, 𝜒 = 2, 𝛾 = 0.5, and 𝜎 =
0.5 (Wright 1996). 

Caveat emptor: I am an audiovisual composer and algorithm hacker, not a mathematician or an 
optimization specialist. Use the following at your own risk! Engineers and mathematicians will 
probably be best advised to refer instead to primary sources. 

1. Start 
The process starts with an initial triangle. It might be placed an initial best guess about where the 
solution lies, or it might be placed randomly or on some other basis. Then the following steps are 
iterated. 

2. Sort 
Find the function values (the height of the landscape) at the three vertices of the triangle and sort 
the vertices from low to high to give 𝑥2, 𝑥3, and 𝑥4.  

3. Reflect 
Compute the reflection point 𝑥5  by reflecting the worst (highest) point (𝑥4) around the centroid 
point 𝑥6	of the best points (𝑥2 and 𝑥3). In our triangle case, the centroid point will be at the 
midpoint of a line between the two best points. The reflection distance is scaled by 𝜌. (See Fig. 1.) 

 
Fig. 1. Calculation of reflection point 𝑥𝑟 by reflecting the worst point 𝑥3 around the centroid 𝑥𝑚 of the best 
points: 𝑥1 and 𝑥2. The dotted line represents the original triangle. The distance between 𝑥𝑚 and 𝑥𝑟 can be 

scaled by a coefficient 𝜌, shown here as if 𝜌 = 1.  

If the function value of 𝑥2 is less than or equal to that of this reflection point 𝑥5 , which in turn is less 
than the worst retained point (𝑥3), we accept this new point as an “improvement” over 𝑥4. 
Therefore, the process retains 𝑥5  as a new point, discards 𝑥4	, and jumps to step 7. Otherwise, we 
proceed to step 4. 

x1 x2

x3

xm

xr



 3 

4. Expand 
If the reflection point is less than the function value of 𝑥2, it is “downhill” compared to the given 
triangle, and we continue with the remainder of step 4. Otherwise we jump to Step 5.  

To see if this trajectory continues downhill, the process calculates an expansion point 𝑥:. One can 
think of the expansion as pushing out even further on a line formed from the centroid point to the 
reflection point, scaled by 𝜒. (See Fig. 2.)  

If the expansion point returns a function value even lower than 𝑥5 , we assume that this is on the 
right track: 𝑥:	is taken as a new point for next triangle and we jump to step 7. Otherwise, if the 
expansion point is greater than or equal to the reflection point, it does not represent an 
improvement; 𝑥5	is retained as the new point and we jump to step 7.  

 
Fig. 2. Calculation of expansion point 𝑥𝑒 by projecting further on the line from the centroid to the 

reflection point. The projection can be scaled by coefficient 𝜒, shown here with 𝜒 = 2. 

5. Contract 
If the reflection point is greater than or equal to 𝑥3, then it lies “uphill”; it is time to try a contraction 
to find a potentially better point, either “outside” or “inside” the original triangle. (See Fig. 3.) 

If the function value of 𝑥3 ≤ 𝑥5 <	 𝑥4, form an “outside contraction” to determine 𝑥=. It will be a 
point on a line between the centroid 𝑥6  and the reflection point, with the distance scaled by 𝛾. If 
the function value at 𝑥= ≤ 𝑥5 , then it is a better choice. We retain 𝑥=	as our new point and jump to 
step 7.  

On the other hand, if the reflection point 𝑥5 > 𝑥4 (that is, it is even higher than our worst point), 
perform an “inside contraction” to determine 𝑥′=, which will lie on the line between the centroid 𝑥6  
and the worst point, 𝑥4. The distance is scaled by 𝛾. If the function value at 𝑥′=  is less than 𝑥4, then it 
is a better choice. We retain 𝑥′=  as our new point and jump to step 7. Otherwise, jump to step 6.  
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Fig. 3. Calculation of outside and inside contractions, with 𝛾 = 0.5. 

6. Shrink 
Retain 𝑥2while calculating two new vertices, 𝑣3 and 𝑣4, by “pulling in” 𝑥3 and 𝑥4 to create a triangle 
of the same shape but smaller size. The scaling is controlled by 𝜎. See Fig 4. 

 
Fig. 4. Calculation of a shrink step, with the triangle scaled by 𝜎 = 0.5. 

7. Evaluate 
Determine if the process should terminate. This may be decided on the basis of the function values 
of the three points being sufficiently close to one another, or on the triangle becoming sufficiently 
small, or on the basis of a maximum number of allowed iterations. If the process does not meet a 
termination condition, return to step 2 above. 
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