
 1

A (Somewhat) Simplified Explanation of the Nelder-Mead Search
Method
Bret Battey • BatHatMedia.com
Revised 27 September 2019

A still from Estuaries 3 (2018), an audiovisual composition I created with the assistance of my OptiNelder
video filter. The Nelder-Mead triangles are quite clear in this image

My OptiNelder video filter entails the visualization of Nelder-Mead search agents seeking brightest
or darkest points in a source image. The filter will be described in detail in an upcoming book
chapter (TBA). The intent with this paper is to describe the Nelder-Mead algorithm itself in relatively
simplified form to facilitate understanding of the process for artists and other non-specialists
(including myself).

Let us conceive of all of the potential outputs of a mathematical function as forming a terrain – a
contoured landscape. Optimization entails finding the lowest point in that landscape. The Nelder-
Mead algorithm (Nelder and Mead 1965) is a classic “direct-search” method for such optimization.
That is to say, it does not optimize by solving equations, but instead uses a heuristic (a rule-of-thumb
process) to hunt for the solution.

Nelder-Mead can be used to solve high-dimensional problems (ones with many variables). But to aid
understanding, below I present a two-dimensional (i.e. two-variable) application specifically rather
than using the more abstract/generalized type of description that mathematicians love. The
explanation here is based on the generalized 𝑛-dimensional formalization provided by M. H. Wright
(1996).

One result of this is that, instead of referring to a “simplex” (a tetrahedron of some arbitrary number
of dimensions), the below refers to a triangle – the type of simplex the Nelder-Mead algorithm
would use to solve a two-dimensional problem.

 2

Thus, we can say: To optimize our two-dimensional problem, the Nelder-Mead algorithm mutates a
triangle iteratively so it moves over the terrain step-by-step. At each step, the algorithm uses what is
discovers at the corners of the triangle to decide how to transform the triangle for the next step.
Hopefully, the wandering triangle will ultimately discover the lowest point in the landscape. (There
are various ways in which it might fail, but we will not address those here.)

The diagrams below are designed based on the standard coefficient settings for the Nelder-Mead
algorithm. The coefficients are referred to in the original paper as 𝜌 (rho) for reflection, 𝜒	(chi) for
expansion, 𝛾 (gamma) for contraction and 𝜎 (sigma) for shrinkage. These should satisfy ρ > 0, χ >
1, 0 < 𝛾 < 1, and 0 < 𝜎 < 1. Standard choices for these values are 𝜌 = 1, 𝜒 = 2, 𝛾 = 0.5, and 𝜎 =
0.5 (Wright 1996).

Caveat emptor: I am an audiovisual composer and algorithm hacker, not a mathematician or an
optimization specialist. Use the following at your own risk! Engineers and mathematicians will
probably be best advised to refer instead to primary sources.

1. Start
The process starts with an initial triangle. It might be placed an initial best guess about where the
solution lies, or it might be placed randomly or on some other basis. Then the following steps are
iterated.

2. Sort
Find the function values (the height of the landscape) at the three vertices of the triangle and sort
the vertices from low to high to give 𝑥2, 𝑥3, and 𝑥4.

3. Reflect
Compute the reflection point 𝑥5 by reflecting the worst (highest) point (𝑥4) around the centroid
point 𝑥6	of the best points (𝑥2 and 𝑥3). In our triangle case, the centroid point will be at the
midpoint of a line between the two best points. The reflection distance is scaled by 𝜌. (See Fig. 1.)

Fig. 1. Calculation of reflection point 𝑥𝑟 by reflecting the worst point 𝑥3 around the centroid 𝑥𝑚 of the best
points: 𝑥1 and 𝑥2. The dotted line represents the original triangle. The distance between 𝑥𝑚 and 𝑥𝑟 can be

scaled by a coefficient 𝜌, shown here as if 𝜌 = 1.

If the function value of 𝑥2 is less than or equal to that of this reflection point 𝑥5 , which in turn is less
than the worst retained point (𝑥3), we accept this new point as an “improvement” over 𝑥4.
Therefore, the process retains 𝑥5 as a new point, discards 𝑥4	, and jumps to step 7. Otherwise, we
proceed to step 4.

x1 x2

x3

xm

xr

 3

4. Expand
If the reflection point is less than the function value of 𝑥2, it is “downhill” compared to the given
triangle, and we continue with the remainder of step 4. Otherwise we jump to Step 5.

To see if this trajectory continues downhill, the process calculates an expansion point 𝑥:. One can
think of the expansion as pushing out even further on a line formed from the centroid point to the
reflection point, scaled by 𝜒. (See Fig. 2.)

If the expansion point returns a function value even lower than 𝑥5 , we assume that this is on the
right track: 𝑥:	is taken as a new point for next triangle and we jump to step 7. Otherwise, if the
expansion point is greater than or equal to the reflection point, it does not represent an
improvement; 𝑥5	is retained as the new point and we jump to step 7.

Fig. 2. Calculation of expansion point 𝑥𝑒 by projecting further on the line from the centroid to the

reflection point. The projection can be scaled by coefficient 𝜒, shown here with 𝜒 = 2.

5. Contract
If the reflection point is greater than or equal to 𝑥3, then it lies “uphill”; it is time to try a contraction
to find a potentially better point, either “outside” or “inside” the original triangle. (See Fig. 3.)

If the function value of 𝑥3 ≤ 𝑥5 <	 𝑥4, form an “outside contraction” to determine 𝑥=. It will be a
point on a line between the centroid 𝑥6 and the reflection point, with the distance scaled by 𝛾. If
the function value at 𝑥= ≤ 𝑥5 , then it is a better choice. We retain 𝑥=	as our new point and jump to
step 7.

On the other hand, if the reflection point 𝑥5 > 𝑥4 (that is, it is even higher than our worst point),
perform an “inside contraction” to determine 𝑥′=, which will lie on the line between the centroid 𝑥6
and the worst point, 𝑥4. The distance is scaled by 𝛾. If the function value at 𝑥′= is less than 𝑥4, then it
is a better choice. We retain 𝑥′= as our new point and jump to step 7. Otherwise, jump to step 6.

x1 x2

x3

xm

xr

xe

x1 x2

x3

xm

xr

xc

x1 x2

x3

xm

x'c

 4

Fig. 3. Calculation of outside and inside contractions, with 𝛾 = 0.5.

6. Shrink
Retain 𝑥2while calculating two new vertices, 𝑣3 and 𝑣4, by “pulling in” 𝑥3 and 𝑥4 to create a triangle
of the same shape but smaller size. The scaling is controlled by 𝜎. See Fig 4.

Fig. 4. Calculation of a shrink step, with the triangle scaled by 𝜎 = 0.5.

7. Evaluate
Determine if the process should terminate. This may be decided on the basis of the function values
of the three points being sufficiently close to one another, or on the triangle becoming sufficiently
small, or on the basis of a maximum number of allowed iterations. If the process does not meet a
termination condition, return to step 2 above.

Bibliography
Nelder, J.A.; Mead, R. (1965) A Simplex Method for Function Minimization. The Computer Journal.
7(4). Oxford Academic. pp. 308-313.

Wright, M. H. (1996) Direct Search Methods: Once Scorned, Now Respectable. Pittman Research
Notes in Mathematics Series: Numerical Analysis 1995. Harlow, UK: Addison Wesley Longman. pp.
191-208.

x1 x2

x3

v2

v3

