
 1

Pre-print version (post-review, pre-typesetting), January 2015. See the
International Journal of Creative Computing for official version, including final
corrections, DOI: 10.1504/IJCRC.2016.076065.

Creative Computing and the Generative Artist

Bret Battey
Music Technology and Innovation Research Centre
De Montfort University
Clephan Building
Leicester, LE1 9BH, UK
E-mail: bbattey@dmu.ac.uk

Abstract: This article addresses the research agenda of creative computing from the
perspective of a generative artist/composer, someone for whom processes of software
creation and art creation inseparably intertwine. Using his audiovisual composition
Clonal Colonies (2011) as a case study, the author addresses the dynamic of
generative artistic creation when it is a process of discovery and dialog with artist-
created, often unpredictable software systems. He provides technical specifics
regarding his use of his Variable-Coupled Map Networks approach for music and his
Brownian Doughnut Warper visual algorithm. Finally, he proposes a set of principles
applicable to the creation of generative artwork, considers how tools and systems
could better support such work, and proposes that creative computing research also
focus on helping creatives surmount the fundamental personal challenges encountered
in creative work of all types.

Keywords: creative computing; generative art; generative music; algorithmic art;
algorithmic music; audiovisual art; visual music; creative processes; iterated maps;
complex systems; emergent behaviour.

Biographical notes: Dr Bret Battey (b. 1967) creates electronic, acoustic, and
multimedia concert works and installations. He has been a Fulbright Fellow to India
and a MacDowell Colony Fellow, and he has received recognitions and prizes from
Austria's Prix Ars Electronica, France's Bourges Concours International de Musique
Electroacoustique, Spain's Punto y Raya Festival and MuVi4, Abstracta Cinema of
Rome, Amsterdam Film eXperience and the Texas Fresh Minds Festival for his
audiovisual compositions. He studied composition and electronic music at Oberlin
Conservatory (BMus) and the University of Washington (MA, DMA Music) and is a
Reader with the Music, Technology, and Innovation Research Centre at De Montfort
University, Leicester, UK.

 2

Error is drawing a straight line between anticipation of what should happen and
what actually happens. (Cage 1961, pp.167-168)

We have come to value… responding to change over following a plan. [From the
Agile Manifesto (Beck et al. 2001)]

Order and chaos, simplicity and complexity, the mechanical and the organic,
aren’t necessarily at opposite ends of a spectrum. They’re symbiotic, intertwined.
Any line we might walk between the two is a knife edge. Our very existence is
poised between entropy and order… (Pearson 2011, p.xxviii)

1. The Artist Toolmaker

Despite the fact that history contains examples of artists spearheading technological
innovations (Fishenden & Hugill 2014), a more common assumption is that engineers
and technologists make tools that artists then use. A comment by composer John
Adams reflects this view: ‘Technology precedes artistic invention (as much as we
artists would like to think it’s the other way around!). First came the electric guitar
and then came rock and roll’ (cited in Cox & Warner 2005, p.111). This reflects an
important partial truth that challenges some potentially misplaced artistic hubris, but
even this particular example is not as clear as it might seem. Les Paul, one of the
pioneers of the solid-body electric guitar, was himself both an electronics
experimenter and a professional guitarist struggling with the challenge of making the
guitar heard in ensemble performances (Lawrence 2008). The relationship between
the electric guitar and rock and roll is not a linear one, either. It would be more
accurate to say that they co-evolved, enabled by a feedback loop (sometimes quite
literally!) in which artistic development and tool development enabled and guided
each other. Certainly there were people involved who were primarily or purely
technicians or artists, but hybrid artist-toolmakers like Les Paul arguably provided an
essential locus for innovation, where one mind in active touch with both artistic and
technical domains could envision, explore and make real new potentials.

This is an important consideration as we approach the question of creative
computing for artists. First, we should recognize the distinction between creative
computing that supports the work of individuals and that which supports the work of
teams. One important focus for creative computing will be lowering the risks of
creative impairment and blockages in cross-disciplinary group processes. But it will
be equally important to recognise the crucial importance and distinct processes of
individuals whose work crosses disciplinary boundaries, wielding a possibly unique
capacity to synthesise new insights in way not possible for teams of specialists.

Second, habit may lead us to unconsciously approach the question of creative
computing for artists with a broad assumption of a ‘software as paintbrush’ or
‘software as instrument’ model, where the active question will be on how software
engineers should make better tools for artists, with an accordant temptation to focus
on linear, waterfall models of development. The rise of approaches such as Agile
Software Development or ‘lean startups’ (Ries 2011) reflects in part the reality that
linear models are often not sufficient for creating successful software for even
comparatively well-defined domains such as business processes or in the highly
dynamic world of app and internet development. On the other hand, if co-evolution,

 3

enabled by feedback, is an essential element of creative artistic and technical
development — or even successful business software development — we might ask
how we can strengthen and shorten the feedback loops involved.

Hugill and Yang, in their introductory essay for this journal (2013) go so far as
to suggest ‘software applications that continuously rewrite themselves in real time in
response to the creative needs of a particular problem or question will be the primary
outputs of Creative Computing’. However, they also suggest that the creation of
satisfactory creative tools in all spheres of human endeavour ‘requires… collaboration
between creative people and software engineers.’ So their formulation to some degree
takes this divide a fundamental. Such a divide, though it may prove necessary for the
development of some facets of creative computing, may diminish and delay the co-
evolution feedback loop in others.

So it is important to ask how creative computing can amplify the artistic
potential of the single individual whose creative visions and activities bridge
technological and artistic development. This includes artists who work with software
development in particular. There is already a significant history of artists and
composers for whom coding is an essential part of their creative processes (see for
example Bohnacker et al. 2012, Chadabe 1997, Wilson 2003) — and who arguably
provide a rich range of models of ‘achieving creativity through computation’, a phrase
from Hugill and Yang’s core definition of creative computing. Given this history and
rapidly expanding current practice, some salient focus questions for creative
computing in the arts may be, ‘How can we better enable artists to make their own
tools’, or even ‘How can we blur or even obliterate the line between tool making and
art making?’ Two related questions are, ‘What, if anything, can only be achieved by
an individual operating as both coder and artist?’ and ‘Are there forms of creative
insight or artistic activity that will inevitably be blocked if creative-computing
software is replacing low-level, or even-mid-level, coding?’ Maybe, ultimately, we
are unavoidably caught in the conflict between the flexibility — and corresponding
barriers — provided by low-level coding and the constraints — and corresponding
facilitating of pre-defined behaviours — provided by high-level software. Either way,
it seems likely that for the foreseeable future there will be artists who see coding itself
as an important creative pathway.

In that context, with this article I look at some of the technical specifics and
artistic dynamics of my work as a generative artist1 for my 2011 audiovisual
composition Clonal Colonies2. In part, my intent is to document some of my
techniques for future elaboration by others. But I also seek to address creative
computing by providing one perspective (of many possible) on how a creative process
can unfold when coding is intrinsic to that process. I highlight gains and areas of
dysfunctions of my own process and inquire how new directions in computing might
amplify the gains and diminish the problems arising with this type of work.

2. Requirements / Motivation

Hugill and Yang propose initial motivation and formulation steps for the process of
musical creation, comparing them the role of user requirements in traditional software
development models. In that sense, the creation of Clonal Colonies was to a large
degree motivated and circumscribed by a commission from New York’s Avian
Orchestra ensemble for a botany-themed concert. This defined the core acoustic

 4

instrumentation: flute, woodwind multi-instrumentalist, violin, cello, piano and
percussion. This also meant that any techniques I used in the development of the piece
needed to result in human-performable work, likely delivered via standard notation.
Given the all-too-common realities of contemporary music making, I also needed to
create work that could be successfully executed with quite limited rehearsal time (a
constraint that, in the end, I arguably failed to meet). The final work eventually took
form in two movements, “Fresh Runners” and “Soft Strata”. The acoustic instruments
perform in sync with a fixed-media video containing a sound track comprised of
computer-realised sound.

The botany theme encouraged me to use this as an opportunity to further
develop my Variable-Coupled Map Networks (VCMN) approach for music
composition (see below), since it was originally inspired in part by artificial life
concepts and biological feedback and homeostasis. Since this decision would raise
many technical and aesthetic challenges in itself, I constrained the scope of the work
by engaging in only incremental expansion of my Brownian Doughnut Warper
(BDW) visual filter (see below) for the visual component of the piece.

My work was also guided by broad (an engineer might say ‘ill defined’) interest
in establishing ‘mysteriously coherent complexity’ — where the mind can perceive
coherence and order amidst a dense and complex audiovisual texture, but isn’t
necessarily sure why it seems coherent. Indeed, though I may be responsible for
creating the software mechanisms that generate a visual or musical result, I may not
fully understand how or why it leads to particular system behaviour, let alone the
response it gives rise to in perception. I am thrilled — sometimes — when my
software’s output exhibits an engaging complex order that I did not predict. For this
reason, I often create software mechanisms that entail complexity and emergence —
either in formal senses of those terms within complexity science, or in the practical
sense that complex interactions between the elements generated by a system result in
effective complexity in perception.

In discussing generative art, Philip Galantner, with reference to Gell-Mann and
information theory, describes effective complexity as a balance point between high-
redundancy (low information content) and randomness (high information content)
(2003). He suggests that, ‘both highly ordered and highly disordered systems are
simple. Complex systems exhibit a mix or order and disorder.’3

Emergence, though a common concept arising in discussions of generative art,
is at least as problematic as the term complexity, ‘with a nexus of barely related
meanings in different domains, making it a difficult term to clearly define, let alone
understand’ (McCormack & Dorin 2001). But practically speaking, it points to the
idea that we can attain relatively complex behavioural results from simple
mechanisms, and be surprised by those results. This is a fundamental draw for many
artists working directly with code. Surprise is an essential aspect of creativity (Boden
2003). For the generative artist, the surprises arising from emergence can inspire
artistic outcomes that he or she may not have initially imagined. The technical ideas
wielded or developed by the artist in the process of making the code need not
necessarily be H-creative, or even fully competent from an engineering perspective,
but the results and the emergent process have the potential to lead the artist in
directions that may ultimately prove P-creative.4

When working with systems that give rise to emergent complexity, the artist
often cannot work by imagining a specific outcome and commanding one’s tools to
achieve it. Instead, the artist ‘dialogs’ with the system, finding what it can and cannot
do. But this is precisely the domain where surprises arise: from what the artist-created

 5

system does rather than elements arising directly out of the artist’s own mind. The
artist often imagines a technical approach, perhaps inspired by a sense it might
provide certain types of results, and then discovers its aesthetic potential. Creativity is
applied to finding ways to work with the system and being receptive to what arises
even if the system’s outputs do not fit one’s original vision. The path is non-linear.
Exploration and editing and continuous reassessment of goals, criteria and means —
including making changes to the mechanisms themselves — will likely be part of the
process.

To return to Hugill and Yang’s proposed layers of activity in music creation,
then, which also include creation, dissemination, and revision, it is crucial not to
overlook their point that these layers interact. That is, there can be a great deal of
feedback between all of these activities — very different from an ordered waterfall
model from software engineering. Perhaps this is even more the case if coding
emergent behaviours is part of the process, where possibilities and creative objectives
likely only solidify through iterations of envisioning, attempting, surprise (and
frustration), and re-envisioning of aesthetic and technical goals. The delight is that all
of these aspects interact and can be sites for inspiration of new creative ideas in both
the artistic and technological domains (see Figure 1).

<Insert Figure 1>

Figure 1: Potential process of the artist-coder. Artistic vision, concepts,

assessment and acts interact with technological vision, concepts, assessment and acts,
creating a dynamic system in which the final product(s) emerge from a process rather
than a predefined set of ‘specifications’.

With that in mind, we can now turn to the genesis, development and application

of the two key generative systems I used in Clonal Colonies: VCMN and the
Brownian Doughnut Warper.

 6

3. Music with Variable-Coupled Map Networks

3.1. Overview
A Variable-Coupled Map Network (VCMN) consists of a set of interlinked nodes.
These nodes are iterated maps — that is, mathematical functions that take their output
and feed them back into an input. The output of any one of these nodes may set a
function variable in itself or any of the other nodes. Each node has a wait-time
between iterations, which can also be set or controlled by other nodes. I described the
concept in detail in Battey (2004).

Most of my work with VCMNs has used Lehmer’s Linear Congruence Formula
(LLCF) as the iterated map:

.
This formula is normally used as a pseudo-random number generator by

optimising the variables for this purpose (Ames 1992). Professor Gary Nelson
introduced LLCF to my computer music class when I was an undergraduate student at
Oberlin College, demonstrating how deoptimising the variables caused LLCF to
become an intriguing pattern generator. ‘Breaking’ a mathematical process or
applying it to purposes for which it was not designed can be a useful creative strategy
for the generative artist.

As a complex system, there is little that can be generalised about the behaviour
of a deoptimised LLCF, and in most ranges small shifts of the variables will create a
non-proportionate change in the behaviour of the output. This is all the more true
when these maps are arranged in VCMNs, which may entail multiple levels of
feedback.

I used LLCF and VCMNs to create sub-elements in a variety of compositions in
the 1990s and 2000s. However, it was only with Clonal Colonies that I first set out to
use VCMNs as a primary tool in developing a large-scale composition.

3.2. Goals/motivation
My goal was to use VCMNs to create a sense of continuous transformation of
material. I had established such a sensibility in some previous pieces via manipulation
of the parameters of one continuously running visual algorithm (see below) or a
feedback-based audio-synthesis process (Battey 2011) for the duration of the piece.
But this becomes a very different challenge when working with acoustic instruments
and discrete notes.

I also wanted to ensure that there were clear, unifying behavioural or thematic
elements audible to the listener. One principle of effective perceptual complexity is
that change has most significance when it occurs to identifiable, coherent elements. I
knew I would need to find ways to overcome the tendency of VCMNs to create too
much novelty.

Finally, I also wanted to create a composition with clear dramatic shape and
contrast. It is relatively easy to create dramatically flat or ‘ambient’ musical structures
with algorithms; classic techniques tend to create patterns exhibiting continuous
change, but not the coherent change in the nature of change necessary to create
dramatic structures. I realised that I might find a way to configure a VCMN to do this,
or I might need to intervene in a more direct fashion to shape the behaviour of the
system. In this sense, I claim that a generative artist does not need to be a purist. The
artist can do what is necessary to achieve results that he or she believes in, even this
requires deviation from a conceptually elegant technical approach.

xt+1 = (xta+ b)modm

 7

3.3. Implementation
For Clonal Colonies, I developed a more fully featured implementation of VCMNs in
the Max programming language5 than had existed in my previous software sketches.
This included a detailed and flexible user interface. I developed a time-quantization
scheme, since I needed rhythmic results that could be notated and performed by
musicians. I added dynamics (MIDI velocity) as a parameter for each node, as well as
facilities for defining pitch modes/scales and refining the mapping of inputs to node
controls. I also added randomisation of the network configuration as a means for
(hopefully) discovering interesting behaviours.

Achieving consistent and reliable system behaviour required addressing
numerous lower-level programming issues, which will not be discussed here.
However, one example points to some risks for the artist-coder. I had recorded a great
deal of VCMN output into a sequencer before discovering that code errors had
generated numerous duplicate notes, which greatly complicated further editing. The
artist coder may not need to engage in thorough unit testing, but he or she does have
to exercise good judgement regarding when and how to test foundational code,
particularly when later production steps have very specific input requirements.

3.4. Configuration
I chose to create a network with six nodes, one for each instrument. This was the
simplest network conceptually with which to write for the ensemble. Even then, the
range of potential configurations and control manipulations was vast — too vast. As I
noted in my composition journal, ‘Lost again. Too many options, too many having
only “OK” results’. I spent quite a bit of time trying various configurations of the
network and nodes and listening to the results without feeling fully satisfied. This,
too, points to a risk for the generative artist: since one does not directly do the hard
work of generating the events themselves, it can be very easy to spend a lot of time
sitting in fascination (or consternation) at the behaviour of the system rather than
doing the hard work of making the artistic and technical explorations and decisions
necessary to move the work forward. Sometimes such decisions feel essentially
arbitrary, but that may be what is needed to narrow and focus the field of possibilities.

The VCMN configuration that I ultimately settled on for the first movement was
a fully driven system, meaning that all node inputs were controlled by another node. I
privileged the violin node, at least conceptually if not perceptibly, as the primary
driver of the network behaviour. The output of the violin node controls all of the node
inputs, including its own, except the violin b-variable and flute b-variable and
velocity (controlled by the bass clarinet), the bass clarinet velocity (controlled by the
flute), the piano a-variable and velocity (controlled by the gongs), and the gong a-
variable and velocity (controlled by the piano). Notice the symmetry of control
between the two percussion elements (piano and gongs). The scale was almost always
a synthetic, symmetrical scale comprised of alternating one- and three-semitone leaps:
C Db E F G# A. This creates a relatively ‘floating’ quality to the scale via the
symmetry and the lack of a fifth scale step and leading tone to the tonic.

For the second movement the configuration was also fully driven, and the piano
node was given emphasis in the control scheme. The two stringed instruments set
each other’s b-variable, rhythm and duration. The two woodwinds were similarly
paired. The piano node set the a-variable of all instruments. Its own a-variable was an
average of the output of all of the other nodes, restraining the range of change it
would undergo. The scale uses the notes of the Hindustani raga Yaman (major scale
with sharp fourth step).

 8

To help break through the paralysis of too many options, I used a common
composer’s strategy: improvisation. I wrote code to decode the MIDI data of a Roland
PG300 synthesizer programmer interface, which provided a variety of continuous and
discrete-value sliders and switches of different ranges. Thus it helpfully both
suggested and limited what I could control with it. I connected the controllers to
provide on/off controls for each instrument, a-variable and b-variable settings for
each node (potentially overriding network connections setting those values), choice of
musical mode/scale, minimum and maximum index into that mode, minimum and
maximum rhythmic values, and minimum and maximum velocity ranges for each
instrument. This made it far easier to explore the behavioural range of the system until
I could gradually sketch a structure for improvisation that would provide a convincing
dramatic shape. Once I had developed that structure, I started capturing takes to a
MIDI sequencer.

As a creative constraint, I decided I would allow myself little or no editing of
the timings or pitches after capturing a take. As I put it in my journal, ‘Current
inclination is to leave [time] space in the acoustic parts and add computer parts by
hand to provide rhythmic cues, bass and canopy, gestural reinforcement, and spectral
fusing.’ In other words, I had to make the captured improvisation work by how I
framed it. This would hopefully encourage aesthetically fresh results as I tried to find
convincing solutions within the constraint.

3.5. Post-processing algorithms
One challenge of using VCMN to generate material for acoustic instruments is the
fact that, in its base configuration, each node will continuously generate notes rather
than break material into phrases. Besides the high potential for monotony, this can be
a problem for wind instrument players, who need pauses in which to breathe. I used
post-processing algorithms to address this issue and also generate additional unifying
behaviours.

The raga system of Hindustani classical music includes the concept of
particular notes in a scale that are given emphasis to achieve the emotional colour of a
particular raga. These are referred to as the vadi (most significant) and samvadi (next
most significant). This emphasis may be achieved with a variety of means, including
relatively frequent restatement, common usage at the beginning and ending of
phrases, longer durations, or special elaborations (Bagchee 1998, pp.44-45). For the
first movement, each time the VCMN generated a note for an instrument, post-
processing code tested to see if the note was an E. If so, a trill was generated for that
note and that instrument’s node was put on pause for a certain number of beats. I set
the length of this pause with a slider on the control box. In this way the VCMN
patterns were broken up into phrases, all of which ended with the same trilled pitch.
This provided a strong behavioural identity that unites the entire movement even as
the piece moves through a variety of strongly contrasting materials. The density of the
whole musical texture was controllable in part by the pause-duration control.

In the second movement, pauses (but no trills) occurred upon arrival at a major
third or seventh. Articulations were legato except when notes repeat, at which point
the articulation turns to staccato. I achieved chords for the piano and gongs by storing
the last three generated notes. An interface slider position determined which of those
three stored notes (if any) were used to double the current note of the gong or form a
chord with the current note of the piano.

 9

3.6. Computer-rendered sound elements
I used the language SuperCollider6 to create most of the computer-rendered sound
elements. This could be discussed at length itself, but the core techniques —
convolution, granulation, pitch-shifting, time-stretching, and resonator models — are
well established in the field. Exceptions include the use of non-quantized VCMN to
create percussive gestures in movement I. These demonstrate the surprising capacity
of VCMN to create coherent rhythmic gestures in a completely free rhythmic space.

3.7. Capture, edit and notate
A surprising amount of my composition journal records struggles to find and
implement a viable technical path to integrate all of these elements. Gradually a
solution evolved out of numerous trials and dead-ends. Ultimately, I routed MIDI data
from the VCMN implementation in Max to the Digital Performer (DP) digital audio
workstation software, with a separate track for each instrument. These tracks were
routed to a Vienna Symphonic Library (VSL) plugin to provide acoustic-instrument
emulation for each part. A Max hostsync~ object allowed the DP transport controls to
drive the Max transport, ensuring timing sync between DP and the VCMN. I recorded
multiple takes into DP. I then selected material from the best takes and edited the
MIDI data. I added and edited the computer-realised sound elements within DP.

But transforming the final sequence data to notation raised another challenge,
particularly given the large amount of detailed instrument-articulation data involved
— triggered by special keyswitch MIDI notes sent to VSL — and often note-by-note
changes of dynamics. I exported the instrumental tracks to Standard MIDI files. Using
Rick Taube’s GRACE7, a LISP/SCHEME-based algorithmic-music language,
combined with David Psenicka’s FOMUS8, a LISP-based library for music notation, I
created a utility, VSLCONV9, to convert the MIDI files to MusicXML. This
included appropriate indications of articulations and dynamics. The music-notation
program Finale converted the MusicXML to music notation. Significant editing was
still needed. From this point, any further edits to the music had to be manually
executed in both DP and the notation.

Between both failed and successful attempts to find this technical path, it
appears that I used at least three different commercial software packages, four
different programming languages, four different data or communications protocols,
and two different notation-oriented code libraries — including custom code to bridge
to those libraries. Little of this effort provided rich potential for new creative insights.
Too much of this kind of challenge risks bringing the artistic process to a standstill.

4. Image: Brownian Doughnut Warper Visual Algorithm

4.1. Origins: The Creative Value of Coding Errors

Creative artists think in a disciplined manner: they may be playful, but they aren’t
merely playing around. When something of potential interest turns up as a result
of their playfulness, the focus on it — accepting, amending and developing it in
disciplined ways. (Boden 2003, p.319)

Software engineering is focused in part on the avoidance and elimination of errors.
But for the generative artist, technical errors are a source of the unexpected, and

 10

therefore they can inspire new creative directions. Indeed, entire musical genres have
developed around technological ‘glitches’ (Cascone 2000).

While teaching a class in generative design as a Research Fellow at the
University of Washington, I developed a class example to demonstrate how to use the
X and Y position of the mouse to control a 3D rotation of a grid around the X and Y
axes, using the Java-based Processing language10. I established a nested loop to draw
a grid of dots on the screen row-by-row and column-by-column. Having not fully
aligned my thinking with fact that OpenGL works as a state machine, I then placed
the 3D-rotation commands inside of the two nested loops rather than outside the
loops. As a result, the rotation angles accumulated for each point in the grid, twisting
each row into 3D spirals. Further, OpenGL points by default do not change their size
based on distance, so the result appears as if it were on a flat plane despite the fact
that displacements are actually in 3D space (see Figures 2a and 2b). Moving the
mouse created a wide variety of patterns emerging from the interaction of the X and Y
rotations. I was fascinated. This one error launched the trajectory of my next decade
of algorithmic image making.

<Insert Figures 2a and 2b>

Figure 2a: Intended rotation of a grid
five degrees on both the x and y axis

Figure 2b: Result when the rotation
command is incorrectly placed inside the
nested loop that draws the grid

4.2. cMatrix10 (2004)
I explored the potential of the algorithm through a series of Processing sketches. Ideas
explored included slow, continuous increment of the angle by code rather than by
mouse in order to provide slow transformation of the resulting patterns, an early
decision to make the y-rotation angle always be twice the x-rotation angle (another
case of an arbitrary decision moving the work forward), and providing colour
variation by loading a digital image and displaying (and warping) it via the grid
algorithm. Given that the points were not scaled by depth, I was free to scale them by
some other basis to provide variation and interest. I gradually developed an approach
in which point size s in pixels was determined by

𝑠 = 1 +
𝑤 − 𝑥
𝑤 +

𝑦
ℎ

where w is the width of the (non-warped) grid, h is its height, and x and y indicate the
point’s width and height location within the grid. This meant that most of the slowest,
inward points were larger than the outlying, fast-moving points. By sketch 10, I had
conceived of a contemplative, looping installation artwork that fades in from a white
screen, starting with tiny points in highly randomized motion, gradually solidifying

 11

and congealing to reveal the rotational patterns. The process reversed at the end of the
loop. Time-echo and blur processing in Adobe AfterEffects thickened the texture and
provided more subtlety in colour gradations. The result, once sound was added, was
the artwork cMatrix1011.

The element of randomization here is in some sense the most readily controlled
aspect of the system. When the same bounds or random behaviour apply to a vast
mass of points, this is actually a consistency, rather than a deviance. It can be likened
to the behaviour of a gas: we don’t know the state of each individual molecule but can
predict the behaviour of the whole with high precision. The gradual scaling of
Brownian noise I implemented for the randomisation provided a fascinating transition
band between randomization and perceptible order, and this in itself seemed worthy
of further investigation.

4.3. Autarkeia Aggregatum (2005)
Another tool used by many artists to generate new ideas or release ideas from the
unconscious is stream-of-consciousness writing, an approach I have used on and off
again since the mid-90s. In a May 30, 2005 note I wrote: ‘Realized today could be
nice to have the cMatrix10 algo as a plugin. Dissolve an image into Brownian or
cMatrix10 rotations or both, then re-coalesce into a new image. Continuity of
transformation. This is the magic.’ Those ideas, which guided much subsequent work,
unassumingly appear in the midst of pages and pages of seemingly mindless
meanderings, dead ends, numerous other ideas never pursued, expressions of
frustration, and mundane notes about how just get a certain idea to work technically at
all. Sometimes giving mundane concerns an outlet, such as through stream of
consciousness writing, provides room for deeper insights to arise. Even then, the
significance of an insight is not always apparent at the time it occurs.

I began to conceive of a new work that would continue to have one thing
continually transforming into the next, without cuts or edits of video material, but
with greater variety and more intentional dramatic shaping than cMatrix10. This
would require detailed control over the input image and of the parameters of the
algorithm. While coding environments like Processing or Max invite exploratory
approaches and iterative development of ideas, they often do not provide the refined
control interfaces found in production-oriented software packages. To solve this, I
shifted to writing custom plugins for Apple’s Motion video effects software, using the
FxPlug Objective-C API. Thus I could use Motion’s interface to control algorithm
parameters, stage and transform the input images, easily provide video (including
time-stretching and filtering) as an input to the plugin, and render output directly to
Quicktime video.

Still, production tools like Motion come with certain ground rules of how
plugins are expected to behave. Typically, one should be able to request a render of
any single arbitrary video frame at any time. But processes that involve feedback over
time, such as a technique I was using of alpha blending a new video frame over the
previous frame to get motion trails, violate this model. This would be a problem if one
were creating software for others to use. But the generative artist can feel free to
violate the host software’s expectations — as long as he or she is willing to deal with
the result (namely, in this case, that the only way to ultimately see what a given frame
is like is to start rendering well prior to that frame).

Since the time cost of creating a Motion plugin for the first time was high, I
constrained what I implemented within it. I focused only on refining the Brownian
displacement and leaving out the 3D rotations. Displacement was now defined by a

 12

polar magnitude and angle. I could set the magnitude and angle increment for each
video frame, providing circular motion. Brownian motion could randomize magnitude
and angle to varying degrees. I used this plugin to create Autarkeia Aggregatum
(2005) 12. Artistic perspectives on this piece can be found in Battey and Fischmann
(publication pending).

4.4. Luna Series (2007-9)
Over the course of three works entitled the Luna Series (Mercurius (2007), Lacus
Temporis (2008), and Sinus Aestum (2009))13, I reintegrated and refined 3D-rotation
schemes inspired by cMatrix10, making what I called the Brownian Doughnut
Warper (BDW) filter. The ‘doughnut’ refers to an enhancement of the polar Brownian
displacement that allowed me to give both an inner radius and outer radius to the
magnitude displacement. Point sizes could be scaled by the brightness of the point or
by the degree of magnitude displacement. I added Z-axis rotations, as well an overall
scalar that could be applied to the angle displacement – allowing a smooth transition
from a non-displaced grid to a full 3D-rotation displacement. Rotations of the three
axes could be linked to each other, either by adding the angle of one of the other axes,
with variable scaling applied, or the square of one of the other axes, again scalable.
By the end of the process of creating the Luna Series, BDW had 30 parameters. By
adding only a few elements with each composition and refining and editing them in
the process of making that composition, I was able to explore the potential of BDW in
depth, solidify the concepts, and demonstrate the core algorithm’s capacity to provide
a wide variety of expressive characteristics. A video is available online that describes
and demonstrates the Brownian Doughnut and Warper mechanisms as they
functioned by 200914.

4.5. Clonal Colonies (2011)
The plugin I developed in the process of making Clonal Colonies, BDWv4, included
more incremental additions, each of which opened up significant new territory for
exploration. By the completion of the piece, the plugin had 58 different parameters.
The addition of two more plugins and a moveable camera (see below) provided even
more options and points of control. The fact that I had gradually developed the tool to
this state over years is what kept this range of options from being creatively
overwhelming. Some of the more notable additions are described below.

4.5.1. Movable camera
For the first time, the camera became mobile in 3D space. This added tremendous
artistic flexibility. But camera position, orientation, motion, and focal length are
complex issues to address in terms of both code and user-interface design. Therefore,
I used Motion’s own 3D-camera controls, passing the transformation matrix into the
plugin — even though this isn’t really how Motion expects the 3D camera controls to
be used (once again, breaking the normal usage paradigm for the host tool). This
turned out to be a teeth-gnashingly frustrating and difficult thing to implement given
my thin linear-algebra skills and limited understanding of OpenGL camera and view
logic. The solution ultimately required significant help and custom code provided by
Apple engineers who support FxPlug developers. Even an obstinately independent
generative artist needs to know when to get help from others.

4.5.2. Bézier splines between points
With this version, BDW evolved to include lines. Let us describe the BDW point grid
in the form

 13

Recall that the actual position of each point is determined first by grid warping
and then by polar displacement. For each point 𝑝	(1 ≤ 𝑝 < 𝑚)	in each column
𝑐	(1 ≤ 𝑐 ≤ 𝑛),	a 3rd-order Bézier spline (Vince 2006) is cast between and
with a global user-definable thickness. The position of the Bézier control point b
associated with any end point is determined by a tangent pointing from the polar-
displaced point position towards the original, non-polar-displaced location. The length
of the tangent is determined by multiplying the displacement distance d by a user-
controllable scalar l (−100 ≤ 𝑙 ≤ 	100). Thus the final disposition of the spline is
determined both by the polar displacement and the user’s specification of the tangent
length, providing a highly flexible and expressive mechanism (see Figure 3).

<<insert Figure 3>>

Figure 3: Determining control points and for a 3rd-order Bézier spline

between two displaced points and . A vector d between displaced point a and its
non-displaced origin is scaled by l (1.5 in this example) to determine the control point
position.

Often in generative work, a seemingly simple idea proves much more complex

to implement than the artist first assumes. In order to draw these lines between points,
the position of each point in the world-coordinate system had to be identified. This
was achieved by pushing the world coordinates onto the OpenGL stack prior to
executing the needed world rotations for a given point, grabbing the resulting
modelview matrix, multiplying the base and displaced point locations by that matrix,
and then popping back to the world-coordinate system to begin drawing.

a11 a12 … a1n
a21 a22 … a2n
! ! " !
am1 am2 … amn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

apc a(p+1)c

b1 b2
a1 a2

 14

4.5.3. ComboSoft Filter
Wanting to achieve more subtle gradation and variety of colour, I re-integrated
another idea from cMatrix10: using blurring and compositing to create subtle colour
gradations and softer edges for objects. I created a new Motion plugin, ComboSoft,
which takes the input OpenGL texture and uses Apple CoreImage to apply a Gaussian
blur with user-definable radius. A parallel process applies user-definable saturation,
brightness and contrast adjustments to the input image. This colour-adjusted image is
then add-composited on the blurred image.

4.5.4. Trailz
A new Trailz plugin provided the motion blur effect built in to previous plugins —
achieved with retention of the previous frame and alpha blending over it. Separating
this effect into its own plugin allowed other post processing, such as the ComboSoft
plugin, to operate after BDF and be included in the feedback loop. Again, this
seemingly simple idea ended up requiring a time-consuming process: this time to
learn how to generate and utilise OpenGL pixel buffers in an FxPlug. However, the
conceptually simple combination of ComboSoft plus Trails provided, though the
feedback mechanism, a highly expressive and flexible — and sometimes delightfully
unpredictable — set of creative options.

5. Audiovisual Relationships: Fluid Audiovisual
Counterpoint

Despite using algorithmic methods heavily in both the musical and visual elements of
Clonal Colonies, I linked image to music almost entirely by hand through detailed
keyframing of the parameters for all five Motion layers (input image, BDW,
ComboSoft, Trailz and Motion Camera).

My choice in this regard is salient to the topic of creative computing. Music and
moving image individually are often complex, multidimensional perceptual gestalts,
where the gap between the quantitative (what we can measure) and the qualitative
(what we experience) is vast. Western classical music, for example, can exhibit an
extraordinarily complex interweaving of linear (melodic) and horizontal (harmonic)
relationships, constraints and structures at multiple temporal levels with weighted
stratifications (forms, modes and meters) — interacting with genetically and
culturally defined psychoacoustic mechanisms and expectations. Instantaneous linear-
reductionist measures applied to music, such as the commonly used amplitude
measurement of a frequency band, will tell us very little about this type of perceptual
gestalt. If an artist maps that reductionist measure to another isolated parameter in an
image-production process, it should not be surprising if the result provides a shallow
audiovisual relationship – at best.

In many situations, algorithmic linkage of music to image in a way that does
reflect the full perceptual dimensionality of both mediums would likely be a question
of artificial intelligence and/or artificial perception rather than creative computing.
For now, deep audiovisual linkage usually requires manual crafting by an artist who is
sensitive to the multidimensional complexity of both music and image gestalts — and
to the new, truly audiovisual perceptions that arise when they are linked. In other
words, I am manipulating the parameters — and sometimes the coding — of
independent audio and visual processes, each of which alone gives rise to emergent

 15

behaviour and perception, seeking through patient trial and error to achieve a
satisfactory co-emergence as these two sensory streams combine.15

Given the complexity of the challenge, in my audiovisual works prior to Clonal
Colonies I focused primarily on establishing long-term isomorphic relationships
between sound and image gestalts. With Clonal Colonies I sought to push my practice
in the direction of a ‘fluid audiovisual counterpoint’. This entails greater ebb and flow
between alignment and non-alignment of tensions between articulation points in
textures and gestures of each medium (Battey 2015).

So the two-year process of creating Clonal Colonies brought together a variety
of techniques and aesthetic impulses, incrementally developed over several years and
pieces, into what hopefully is finally perceived as a seamless audiovisual whole.

6. Conclusion: Creative Computing and the Generative
Artist

If the domain of creative computing includes using computation creatively, then the
work of generative artists can clearly be included under its aegis. As such, a
legitimate task for creative-computing research is to seek principles underlying or
facilitating the work of generative artists. We can also ask what types of software
systems or characteristics might better facilitate the creative processes of these artists.

6.1. Principles
Reflecting on the above, I offer the following summary of some explicit or implied
principles for the generative artist that arise from my own work:

• Errors in coding can be a catalyst for new creative directions.
• Artists can use code as a disciplined means to relinquish control to generate

new ideas.
• Creating systems that entail some degree of unpredictability can be helpful,

if one is willing to engage in the necessarily dialog with the system to
discover its capabilities and limits.

• Perceptual complexity often lies between the extremes of redundancy and
randomness.

• Deciding how to explore the behavioural potentials of a generative system
is itself an art. Setting arbitrary constraints is often a necessary part of this
art.

• When the generative system offers too many options, consider using
improvisation.

• The refined mechanisms of production software can be very usefully
combined with custom coded tools. The generative artist can choose to
break the host software’s paradigms when doing so.

• The generative artist needs to acknowledge when he or she is in over her
head and requires the help of others — or just needs to try a different path.

• Breaking, mistuning or misapplying algorithms can be a powerful creative
approach.

• The generative artist must balance the love of creating new systems and
pursing new ideas with the drive and focus needed to create finished works
(however one defined ‘finished’).

 16

• Sometimes it is useful to focus on just the smallest incremental changes in a
system that can open up new expressive potentials.

• The generative artist may be sorely tempted to justify his or her work in
terms of the design of the code or its technical concept rather than the
artistic result.

• Every programming language encourages certain kinds of behaviour and
discourages others.

• The generative artist would do well to be aware that generalised code is
more time-consuming to create than code ‘hardwired’ to achieve a specific
purpose.

• Through-test complex production paths early.
• Technical ideas are almost always more difficult to implement than the

eager generative artist thinks they will be.
• There is no replacement for the hard work of applying sensitive and patient

human sensory perception and critique translated into iterative refinement.
• Overcoming the over-perfection of computation is an important

consideration for the generative artist. It usually takes conscious work to
create excellent imperfections that will optimise the interest of human
perception.

6.2. Creative-Computing Support for Generative Production
Is it possible for a creative-computing meta-tool to enable some of the gains of
generative computing while reducing some of its aspects that can inhibit creative
flow?

My own work as a generative artist is characterised by attributes of creative
computing such ‘endlessly fluctuating mix of divergent and convergent thinking’, and
numerous moves back and forth between activities of ‘motivation, ideation,
implementation and operation’ (Hugill & Yang 2013). In that case, any step in a
production process that is a non-reversible transformation inhibits this flow. The
capture of VCMN output in a sequencer, then editing, then transferring to notation
provides an example, because I could no longer move back to the generative roots of
the materials. Ideal tools and processes would create a high level of reversible
transparency between such steps.

Certainly any coding process has some potential to give rise to a creative
insight. But some coding activities are more likely to do so than others. My Clonal
Colonies journal documents far, far more technical problem solving than artistic
problem solving and visioning. When a generative artist has to expend extended effort
and time on issues such as figuring out how to execute an idea using a poorly
documented API, or coercing data types to pass information between disparate
protocols and applications — they are distracted from the creative process and flow is
interrupted. An ideal generative-arts meta-tool might be able to deal with such low-
and mid-level issues that would otherwise add friction to the creative process, while
still allowing artistically focused coding by the user.

On the other hand, we might imagine a generative-arts meta-tool that is an
assistant to whom an artist can make requests in natural language, where coding is no
longer necessary to work with generative means: ‘Let’s draw a grid of points starting
from the upper left-hand corner, which can be rotated on the x and y axis using the
mouse, and where I can control the grid size, spacing and rotation’. In theory, though,
this could remove or reduce the possibility of fortunate errors. Fortunately, language
parsing technologies and the ambiguities of mapping language to function might in

 17

themselves result in interesting errors. But the meta-tool could also be designed to
offer errors or alternative interpretations: ‘Here is your system. Would you like to see
it with rotations applied for each point? With the nested loops reversed? With mouse
motion inverse mapped? With the shape extended to a cube? Extended to a projected
hypercube? Would you like to see other artists’ programs that involve similar
systems? Would you like to search a cultural-symbol free-association space linked to
the concept of rotating grids? Would you like access to a set of resources about
constructivist art?’

6.3. Supporting the Human Dimension
<insert figure four>

Figure 4: time pressure impinging on the heart from all directions (Clonal
Colonies composition journal, November 2, 2009)

Over the last few days feeling uncomfortable with [the second movement]. It
risks triviality and shallowness. Going back and listening to previous
improvisations… (Clonal Colonies composition journal, July 21, 2011)

It is tempting to focus just on the technical needs of generative artists when
considering the potentials of creative computing, or on specific mechanics of the
creative process for creatives in general. However, for all types of creative workers,
the greatest challenges are not technical, but personal.

To appropriately address the issue of creative computing, it is important to
emphasise that the descriptions about my process and technique given above in
sections 3-5 cannot sufficiently communicate the vast amount of nonlinearity,
uncertainty, goal renegotiation, blind alleys, tiny increments of failure and success,
discarded work, and overall groping exploration and problem solving in aesthetics
and technology involved. At times, psychological stamina and self-belief, not new
ideas, are the elements that seem at most risk of running dry.

Philosopher Robert Grudin proposes a set of common characteristics that
comprise an ‘ethos of inspiration’ amongst people who exhibit high levels of
innovative thinking. These include a passion for work (where the work/leisure
dichotomy may disappear altogether), fidelity (on-going, long-term commitment to
major challenges), love of the problematic (‘a chronic attraction to things that do not
totally fit, agree, or make sense’), love of beauty, a sense of wholeness (equipping us
for awareness of anomalies), boldness, consequence (‘seeing every major juncture in
a given study as part of a process rather than a thing in itself’), innocence and
playfulness, courtesy (suspension of ego), suffering (enduring the short-term pains
and uncertainties inherent in the work), remembrance, a sense of continuity of
perception, openness, and liberty. He also notes, ‘though creative insight may be
delightful in itself, it normally is predicated on training, prolonged concentration, and
exhausting practice that are not pleasant in the same sense’ (Grudin 1990, p.9).

 18

In many ways, this is a significantly different list than we might find in an
analysis of the mechanisms of creativity such as Boden’s (2003). This is because
Grudin is addressing the phenomenological reality of the creative process rather than
looking for principles that might be used to guide the design of computational
creativity. But perhaps it is precisely in this domain that creative computing could
have its largest impact: helping human beings navigate with greater grace, efficacy
and flow the lived dynamics of creative work. When we are being too safe, can a
creative-computing tool encourage us to be bold? When we have been obstinately
pushing against one wall for too long, could software encourage us to step back and
reconsider? When we are being too self critical, can software point us to activities that
will reconnect us with our sense of liberty? When we need to attain a deeply
concentrated state in order to achieve creative insight, can software guide us? When
we reach the limits of our stamina, can a tool help us ‘gamify’ our challenges or
remind us of our past successes?

Such software would likely require computational creativity, but would not use
it to replace or replicate human creativity. Instead, it would help human creators
strengthen their individual ‘ethos of inspiration’ and sustain the fortitude needed to
navigate the unknown — so that, as Rilke wrote in his Book of Hours, what we do
may flow from us ‘like a river / no forcing and no holding back / the way it is with
children’ (1996).

7. References

Ames, C., 1992. A Catalog of Sequence Generators: Accounting for Proximity,
Pattern, Exclusion, Balance and/or Randomness. Leonardo Music Journal, 2(1),
pp.55–72.

Bagchee, S., 1998. Nād: Understanding Rāga Music, Mumbai: Eshwar.
Battey, B., 2004. Musical pattern generation with variable-coupled iterated map

networks. Organised Sound, 9(02), pp.137–150. Available at:
http://www.journals.cambridge.org/abstract_S1355771804000226.

Battey, B., 2011. Sound Synthesis and Composition with Compression-Controlled
Feedback. In Proceedings of the International Computer Music Conference.
Huddersfield, UK.

Battey, B., 2015. Towards a Fluid Audiovisual Counterpoint. Sonic Ideas, 7(14),
pp.26–32. Available at: http://www.sonicideas.org.

Battey, B. and Fischman, R. (publication pending) Convergence of Time and Space:
Visual Music from an Electroacoustic Music Perspective. In Kaduri, Y., Ed., The
Oxford Handbook of Music, Sound, and Image in the Fine Arts, Oxford: Oxford
University Press.

Beck, K. et al., 2001. The Agile Manifesto. Available at:
http://www.agilealliance.org/the-alliance/the-agile-manifesto/ [Accessed
November 27, 2015].

Boden, M., 2003. The Creative Mind: Myths and Mechanisms, London: Routledge.
Bohnacker, H., Groß, B. & Laub, J., 2012. Generative Design: Visualize, Program,

and Create with Processing C. Lazzeroni, ed., New York: Princeton
Architectural Press.

Cage, J., 1961. Silence: Lectures and Writings by John Cage, Middletown, CT:
Wesleyan University Press.

 19

Cascone, K., 2000. The aesthetics of failure: 'Post-digital' tendencies in contemporary
computer music. Computer Music Journal, 24(4), pp.12–18.

Chadabe, J., 1997. Electric Sound: The Past and Promise of Electronic Music, Upper
Saddle River, New Jersey: Prentice Hall.

Cox, C. & Warner, D. eds., 2005. Audio Culture: Readings in Modern Music,
London: Continuum International.

Fishenden, J. & Hugill, A., 2014. The Creativity-Innovation Elapse (CIE): Creative
Innovation, Technological Acceleration and Economic Growth The Technology
Adoption Lifecycle, Available at: https://www.bathspa.ac.uk/Media/Centre for
Creative Computing/The Innovation Elapse - Creative Innovation and
Acceleration. FishendenHugill-2.pdf [Accessed November 27, 2015].

Galanter, P., 2003. What is Generative Art? Complexity theory as a context for art
theory. In GA2003–6th Generative Art Conference.

Grudin, R., 1990. The Grace of Great Things: Creativity and Innovation, Boston,
MA: Ticknor and Fields.

Hugill, A. & Yang, H., 2013. The Creative Turn: New Challenges for Computing.
International Journal of Creative Computing, 1(1), pp.4–19.

Lawrence, R., 2008. The Early Years of the Les Paul Legacy: 1915-1963, Milwaukee,
WI: Hal Leonard.

McCormack, J. & Dorin, A., 2001. Art, Emergence, and the Computational Sublime.
In Second International Conference on Generative Systems in the Electronic
Arts. pp. 67–81.

Pearson, M., 2011. Generative Art: A Practical Guide Using Processing, Shelter
Island, NY: Manning.

Ries, E., 2011. The Lean Startup, London: Penguin.
Rilke, R., 1996. Rilke’s Book of Hours Translated by A. Barrows & J. Macy. New

York: Riverhead.
Subyen, P., 2015. Mapping, Meaning, and Motion: An Artistic Framework for

Visualizing Movement Quality. PhD Thesis, Simon Fraser University.
Vince, J., 2006. Mathematics for Computer Graphics 2nd Edition, London: Springer.
Wilson, S., 2003. Information Arts: Intersections of Art, Science and Technology,

Cambridge, MA: MIT Press.

8. Notes

1 The term ‘generative art’ is subject to numerous definitions. In this paper, it

can simply be considered another term for art (visual, music or other) that involves an
artist coding and manipulating algorithms as part of his or her process.

2 Clonal Colonies is available online at
http://BatHatMedia.com/Gallery/clonal.html

3 To be strictly true, this must be a statement regarding the behaviour/output of
a system, not a statement about the system design itself. Indeed very simple systems
can create statistical randomness; very elaborate processes can exhibit repetition or
stasis.

 20

4 Margaret Boden makes a distinction between P-creativity, which is novel to

the individual mind, and H-creativity, which is novel with respect to human history.
(Boden 2003)

5 http://cycling74.com/
6 http://supercollider.github.io/
7 http://commonmusic.sourceforge.net/
8 http://fomus.sourceforge.net/
9 http://BatHatMedia.com/Software/index.html
10 http://processing.org
11 http://BatHatMedia.com/Gallery/cmatrix10.html
12 http://BatHatMedia.com/Gallery/autark.html
13 These three works are available at http://BatHatMedia.com/Gallery/
14 https://vimeo.com/14957896
15 In this light, and challenging the absolutism of my statement, it is interesting

to note the growing experimentation in recent years of using elements of Laban
Movement Analysis as a qualitative intermediary between objective motion tracking
and generative image and sound in interactive dance. See for example Subyen (2015).
However, it is also notable that the phenomenological sense of the body is the
foundation of the technique and most implementations require AI learning to link
motion data to LMA movement qualities.

